Panel 4

Marc Ouellette Jo-Anne Dillon Gerry Wright Robert Hancock Thomas Louie What can we do to create more innovative solutions to counteract loss in antimicrobial effectiveness through research and development, new diagnostics and finding new antibiotics?

CIHR Strategic Inves	Junion	.0				
Investments (millions \$)	2011-12	2012-13	2013-14	2014-15	2015-16	Total
Antimicrobial resistance	19,9 \$	19,8 \$	17,9 \$	18,8 \$	20,2 \$	96,6 \$
Existing and emerging threats	21,9 \$	32,2 \$	36,5 \$	48,7 \$	62,8 \$	202,0 \$
Vaccines	19,2 \$	13,3 \$	13,9 \$	18,0 \$	17,6 \$	82,1 \$
Inflammation	36,4 \$	49,5 \$	59,8 \$	68,3 \$	59,0 \$	273,1 \$
Human Microbiome	3,8 \$	5,2 \$	7,5 \$	9,2 \$	15,3 \$	41,0 \$
Transplantation	15,0 \$	17,1 \$	20,5 \$	20,3 \$	20,7 \$	93,6 \$
Human immunology and immunotherapy	40,6 \$	52,1 \$	58,1 \$	59,9 \$	56,4 \$	267,2 \$
HIV/AIDS	40,6 \$	52,1 \$	58,1 \$	59,9 \$	56,4 \$	267,2 \$
Hepatitis C	8,6 \$	8,5 \$	8,6 \$	12,6 \$	12,1 \$	50,5 \$

Funding opportunity	Launch Date	CIHR Investment	Funding start date	Topics
JPIAMR InnovaResistance 12 countries	January 2014	\$3.8M for 3 years	January 2015	Innovative approaches to AMR
JPIAMR Transmission Dynamics 18 countries	January 2016	\$2.6M for 3 years	January 2017	Transmission One Health Intervention
JPIAMR Working Groups on AMR 9 countries	February 2016	\$110K for 1 year	January 2017	White papers on priority topics
AMR Point of Care Diagnostics in Human Health	May 2016	\$1.39M for 2 years	January 2017	Diagnostics
JPIAMR Prevention and Intervention 15 countries	January 2017	\$3M for 3 years	October 2017	Stewardship One Health

	g Antimicrobial R a Global Health AST Method Ition, Disc Susceptibility	Priority s:
	Agar Dilution	Etest
Methodology	Difficult, labour intensive	Easier, requires training
	Technology >40 years old	
Type of Laboratory	Used primarily in reference laboratories	Reference mostly
Cost	Technical costs	Unaffordable in many settings. May not be available.
QA/QC programs	Required but few engage	Required but few engage
	Interpreting MIC Results from Agar Dilution Method The MIC is the lowest concentration of animicrobial agent that completely inhibit growth	
Dillon	CAHS SEPTEMBER 14 2017	17

CAHS ACSS	Performance	e of Molecular (R-Based Diagnostics of AMR of Molecular (PCR-DNA sequencing) Assays for AMR: ardization of tests for low and middle Income countries be achieved?					
	SNP	Ceftriaxone MIC ≥0.032 mg/L		Cefixime MIC ≥0.032 mg/L				
	5.11	% Sensitivity	% Specificity	% Sensitivity	% Specificity			
	ponA	98.0%	72.8%	95.8%	66.7%			
	mtrR	94.6%	80.4%	92.4%	73.8 %			
	porB	93.3%	64.8%	90.9%	57.7%			
	penA Mosaic	61.1%	99.0%	63.2%	99.1%			
	CNID		Ciprofloxacir	n MIC ≥1 mg/L				
	SNP	% Sens	itivity	% Sp	ecificity			
	gyrA S91	100%		9	3.8%			
	gyrA D95	100%		9	6.9%			
	parC	96.1%		9	9.0%			
	Sensitivity	and Specificity of SN Peterson et al JCN	P targets on 252 N. 1 2015 53:2042; Petersor	-	es from Canada			
Dillon		CAH	CAHS SEPTEMBER 14 2017 20					

M						
1900	1925	1950	1975	2000	2025	
Pre-antibio	otic era					
Chance disco Synthetic con Niche applica	pounds	Golden Era Natural products Whole-cell screens High success	Med Chem Era Synthetic tweaking Whole-cell screens Broad spectrum High success	Resistance Era Modern drug discov Target-based Broad spectrum Zero success	Post –antik Back to 1900	

Back to the future: Natural Products

- New antibiotics new sources
- Discarded known antibiotics (narrow spectrum)
- 'Cryptic' compounds
- Synthetic biology for novel compounds

1975 Med Chem Era Synthetic tweaking Whole-cell screens Broad spectrum High success	Golden Era Natural products Whole-cell screens High success Med Chem Era Synthetic tweaking Whole-cell screens Broad spectrum High success	biotic era sovery sompounds cations
Med Chem Era Synthetic tweaking Whole-cell screens Broad spectrum	Golden Era Natural products Whole-cell screens High success Med Chem Era Synthetic tweaking Whole-cell screens Broad spectrum	i i i i biotic era bowery bompounds cations Golden Era Natural products Whole-cell screens High success Med Chem Era Synthetic tweaking Whole-cell screens Broad spectrum
	Golden Era Natural products Whole-cell screens	sovery mpounds cations Golden Era Natural products Whole-cell screens

Replacing Missing Microbes in heath care: Probiotics and normal flora components, some or all, for host defense.

- Not enough defense! After 7 decades of antimicrobial use (offense), with infection prevention control, antibiotic stewardship and hand hygiene (defense) to contain spread of AMR, we are loosing the war......
- The value of <u>colonization resistance</u> has barely been utilized in health care to limit the spread of AMR. Epithelial surfaces colonized by normal microbiota resist the establishment of pathogenic microbes.
- The perfect storm! Combinations of susceptible hosts, antibiotic exposure, transmission prone health care facilities convert patients into bioreactors to amplify AMR microbes.

THOMAS LOUIE CAHS FORUM ON ANTIMICROBIAL RESISTANCE SEPTEMBER 14, 2017

