Insights into the Neural Bases of Addiction

Anthony Phillips
University of British Columbia
Institute of Mental Health
Drug addiction is a brain disease with the following cardinal features:

- Compulsive thoughts and actions directed towards procuring and administering a drug of choice.
- A very strong tendency to reinstate drug seeking behaviours to such a degree that addiction appears to be a "chronic relapsing disorder".
- Relapse can be induced by:
 - re-exposure to the drug
 - re-exposure to conditional stimuli
 - exposure to stressors
- Relapse may be subserved by dopamine-glutamate interaction.
Key Assumptions

• All drugs of abuse exert powerful effects on brain neurochemistry

• All drugs of abuse ‘high-jack’ brain function related to natural motivation and reward processes

• Repeated exposure to drugs of abuse causes long-lasting modification of brain structure and function.

• Environmental stimuli and direct pharmacological effects of drugs of abuse in combination are major determinants of addiction
All Drugs of Abuse Exert Powerful Effects on Brain Neurochemistry

Methamphetamine at the synapse

Methamphetamine stimulates the release of excess dopamine.
Dopaminergic and Noradrenergic Substrates of Positive Reinforcement: Differential Effects of d- and l-Amphetamine

Anthony G. Phillips and Hans C. Fibiger

Fig. 1 Increase in intracranial self-stimulation (ICS) above control levels from two electrode placements in the brain, produced by different doses of d- (○—○) and l-amphetamine (●—●). Control levels were obtained for each animal by determining the difference between two daily 15-minute test sessions on each of the 6 or 7 days before the drug was given. The abscissa represents the drug induced increase in ICS relative to the average change observed on control days.
Reward produced by microinjection of \(\text{(D-Ala}\,^2)\text{Met}^5\text{-enkephalinamide} \) into the ventral tegmental area

ANTHONY G. PHILLIPS and FREDRIC G. LePIANE

Department of Psychology, University of British Columbia, Vancouver V6T 1W5 (Canada)

Measure the rewarding effects of a drug by measuring the contextual association with the drug injection.

Fig. 1. A: preference scores for a compartment paired with microinjection of D-Ala \((50, 100, 250 \text{ ng}) \) or vehicle into the ventral tegmental area or control placements in central grey (D-Ala, 100 ng). Data are expressed as post-conditioning scores/pre-conditioning scores \(\times 100 \). B: effects of naloxone (2 mg/kg) on place preference produced by microinjection of D-Ala (100 ng) into ventral tegmental area.
Neurochemical correlates of relapse to D-amphetamine self-administration by rats induced by stimulation of the ventral subiculum
All drugs of abuse ‘usurp’ brain function related to natural motivation and reward processes.
In humans, (PET) imaging studies have established a relationship between dopamine transporter occupancy by cocaine & subjective effects of the drug [Volkow et al, 1997].
VTA activation is associated with the “rush” experienced following cocaine administration in addicts and with experienced pleasure from eating chocolate in chocoholics.

Breiter et al., 1997 Neuron
Small et al., 2001 Brain
Behavioural sensitization as a model of drug-craving in human drug addicts

- Hallmarks of addiction are ‘craving’ and ‘relapse.’
- Craving, defined as compulsive thoughts and actions related to procurement of drugs of abuse that persist for extended periods of time.
- Behavioural sensitization is manifested in rodents as increased exploratory activity or focused repetitive motor stereotypies.
- In common with the development of ‘craving,’ these effects increase in magnitude and persist for long periods once manifested.
- Robinson and Berridge (1993) hypothesize that sensitization of the mesocorticocolimbic dopamine system can enhance and distort motivational processes related to both natural rewards and drugs of abuse.
LOCOMOTOR SENSITIZATION

DAY 1

COCAIN

DAY 2

DAY 3

DAY 4

Sanchis-Segura & Spanagel, 2007
Neurochemical and Behavioural Measures of D-Amphetamine Sensitization

Amphetamine Self-Administration: Progressive Ratio

Environmental stimuli and direct pharmacological effects of drugs of abuse are major determinants of addiction.
Disruption of LTD blocks amphetamine-induced behavioral sensitization in a context-dependent manner.
Context-dependent sensitization

• Behavioural sensitization is context-specific (Robinson, 2001; Badiani & Robinson, 2004).

Other models: Context-induced relapse, conditioned place preference

• 3 memory mechanisms may regulate context-specificity of AMPH sensitization:

 1. Sensitization of the neural substrate that mediates the unconditioned response (UR) to the drug

 2. An inhibitory process can block the expression of neural sensitization in contexts where the drug is not expected, involves a form of inhibitory occasion-setting

 3. An excitatory conditioned response (CR) can amplify the sensitized response in a context where the drug is expected

• Taken together, the ability of drug-associated contexts to modulate expression of neural sensitization via occasion-setting may combine with the ability of a drug-associated context to produce conditioned responses, providing powerful associative control over not only behavioral sensitization, but in addicts, over craving and relapse.
Experiment 1: Effects of GluR2\textsubscript{3Y} on induction of sensitization

- **A. Saline**
 - Pretreatment: GluR2\textsubscript{3Y} or controls
 - 60 min
 - AMPH (1.0 mg/kg)
 - 5 injections

- **B. AMPH (1.0 mg/kg)**
 - Pretreatment: GluR2\textsubscript{3Y} or controls
 - 60 min
 - AMPH (0.5 mg/kg)
 - 5 injections

Graphs:
- **Total Movement (cm) in 30 min period**
 - 1st Injection
 - 5th Injection
 - Comparison between Vehicle and Scrambled peptide for GluR2\textsubscript{3Y} treatments.
Experiment 1: Effects of GluR2_{3Y} on maintenance and expression of sensitization

AMPH Challenge (0.5 mg/kg) DAY 24

Total Movement (cm) in 30 min period

<table>
<thead>
<tr>
<th>Induction Drug Treatment</th>
<th>Saline + d-amph</th>
<th>Saline + d-amph</th>
<th>Saline + d-amph</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vehicle</td>
<td>Scrambled peptide</td>
<td>GluR2<sub>3Y</sub> peptide</td>
</tr>
<tr>
<td>Saline</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Conditioning Drug
- Green: Saline
- Blue: AMPH

*Indicates significant difference
Concluding Remarks

• Behavioural sensitization models drug-craving in humans and pre-clinical animal models.
• Behavioural sensitization is mediated by unique long-term memories linking environmental cues with the mood-altering properties of drugs of abuse.
• Drugs of abuse change brain structure and function via modification of synaptic plasticity.
• Long-term depression of synaptic activity plays a key role in context-dependent behavioural sensitization.
• Research is the key
• New paradigms required that link clinical and basic research in novel ways
• Research on trauma and addiction holds promise for meaningful breakthroughs
• For more information, please attend:

Lost in Translation: seeking answers in addiction and concurrent disorders
February 15 – 17, 2011

UBC – Life Sciences Centre
www.cheos.ubc.ca
Acknowledgments

Phillips Lab (UBC):
Karen Brebner
Fiona Choi
Carine Dias
Dennis Fiorino

Wang Lab (UBC):
William Ju
L.D. Liu
Tak Pan Wong
Zhifang Dong
Yu Tian Wang
Experiment 2: Effects of GluR23Y on context-dependent sensitization

Repeated AMPH Challenges (0.5mg/kg) in Context B

Treatment Groups
- Saline
- Veh control + AMPH
- Scr peptide + AMPH
- GluR23Y peptide + AMPH

Total Movement (cm) in 30 min period

<table>
<thead>
<tr>
<th>Treatment Day</th>
<th>Ch1</th>
<th>Ch4</th>
<th>CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch1: AMPH Challenge (0.5 mg/kg) in Context B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch4: AMPH Challenge (0.5 mg/kg) in Context B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH: Final Challenge (0.5 mg/kg) in Context B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modeling Sensitization to Stimulants in Humans
An $[^{11}\text{C}]$Raclopride/Positron Emission Tomography Study in Healthy Men
Isabelle Boileau, PhD; Alain Dagher, MD; Marco Leyton, PhD; Roger N. Gunn, PhD; Glen B. Baker, PhD; Mirko Diksic, PhD; Chawki Benkelfat, MD

Arch Gen Psychiatry. 2006;63:1386-1395.
t-Statistical maps of [11C]raclopride binding potential (BP) change illustrating a decrease in [11C]raclopride BP after dose 1 (A), dose 4 (B), and dose 5 (C) amphetamine administrations (0.3 mg/kg by mouth) relative to the drug-free control condition (x, y, z = 28, 2, 0)
Behavioural Sensitization: an exemplar of drug induced long-term changes in brain function and behaviour

- Definition: a progressive augmentation of behavioural responses to psychomotor stimulants (amphetamines, cocaine, nicotine) that develops during their repeated administration and persists even after long periods of withdrawal.
Relationship between dopamine sensitization and novelty-seeking personality

Compulsive Drug Use Linked to Sensitized Ventral Striatal Dopamine Transmission

Andrew H. Evans, FRACP, Nicola Pavese, MD, Andrew D. Lawrence, PhD, Yen F. Tai, MRCP, Silke Appel, MD, Miroslava Doder, David J. Brooks, MD, FRCP, DSc, Andrew J. Lees, MD, FRCP, and Paola Piccini, MD, PhD

Ann Neurol 2006; 59:852-8

Fig 2. Sagittal (x = 17.40), coronal (y = 14), and transaxial (z = -9.85) projections of statistical parametric maps superimposed on a standardized magnetic resonance imaging template. Shown is the localization of significant differences (in orange/yellow) in altered 11C-raclopride (RAC) binding potential after a single dose of L-dopa between control PD and dopamine dysregulation syndrome (DDS) groups. These areas were identified as right and left ventral striatum using Montreal Neurological Institute coordinates (right x, y, z: 18, 12, -8; p = 0.049; z = 3.22; left x, y, z: -14, 14, -8; p = 0.048; z = 3.38), confirming the region of interest findings of higher dopamine release in ventral striatum in the DDS group.
Experiment 2: Effects of GluR23Y on context-dependent sensitization

INDUCTION
- Pretreatment: GluR23Y or controls
- 60 min
- AMPH (1.0 mg/kg)

CHALLENGE
- AMPH (0.5 mg/kg)

Treatment Groups
- Blue: Saline
- Red: Veh control + AMPH
- Green: Scr peptide + AMPH
- Black: GluR23Y peptide + AMPH

Graph Details
- **Total Movement (cm) in 30 min period**
- **Y-axis:** 0 - 10,000
- **X-axis:** Treatment Day

Legend
- D1: AMPH Induction Day 1 (1.0 mg/kg) in Context A
- D4: AMPH Induction Day 4 (1.0 mg/kg) in Context A
- ChA: AMPH Challenge (0.5 mg/kg) in Context A
- ChB: AMPH Challenge (0.5 mg/kg) in Context B

Timeline
- Surgery: 1 week
- Experimental Day:
 - INDUCTION: Days 1, 3, 5, 7, 8 (Context A)
 - Drug-free: Days 9, 10
 - CHALLENGE: Days 21, 22, 24, 26, 28, 30, 31 (Context A)
 - Drug-free: Days 32, 33
 - CHALLENGE: Day 45 (Context A)
 - Drug-free: Day 46

Graph Notes
- Pretreatment: GluR23Y or controls
- Drug-free periods
- Total Movement cm in 30 min period
Experiment 3: Compound context-dependent sensitization

INDUCTION
Pre-treatment: GluR23Y or controls
--- 60 min ----
AMPH (1.0 mg/kg)

CHALLENGE
AMPH (0.5 mg/kg)

Experimental Day:

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
<th>16</th>
<th>29</th>
<th>30</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery 1 week</td>
<td>Induction</td>
<td>8 injections</td>
<td>Drug-free</td>
<td>Challenge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Context A and B**
 - Experimental Day: 1, 3, 5, 7, 9, 11, 13, 15, 16, 29, 30, 32
 - Saline Control
 - 1 Vehicle
 - 2 Scrambled Peptide
 - Paired GluR23Y Peptide
 - Unpaired GluR23Y Peptide

- **Context A / B**
 - Pretreatment: GluR23Y or controls
 - 60 min
 - 8 injections
 - Drug-free
 - AMPH (1.0 mg/kg)
 - Challenge
 - AMPH (0.5 mg/kg)
 - 2 injections