

A pioneer area for drug discovery across multiple therapeutic areas

Cheryl Arrowsmith
University of Toronto
Ontario Cancer Institue
Sept 30th 2010

SGC Oxford

SGC Stockholm

Structural Genomics Consortium

Public-private consortium funding pre-competitive protein-based science

- GSK, Merck, Novartis
- Canadian, Swedish granting agencies
- Wellcome Trust, UK

Goals: 3D protein structures for biological and drug discovery (~160/year)

Three sites: Toronto, Oxford, Stockholm

All data and reagents are made publicly available, without restriction on use

- 3D structures
- Protein expression clones
- Protocols for expression and crystallization
- Other protein-based protocols and methodologies
- www.TheSGC.org

New initiatives in developing chemical probes and protein capture reagents for biological discovery and potential new drug targets

Epigenetics

Heritable changes in phenotype caused by mechanisms other than changes in the underlying DNA sequence

Epigenetics: Pioneer Target Area

Biologically attractive, "pioneer target area"

- Play a key role in development, differentiation and stem cell biology
- Underlie many chronic diseases: cancer, inflammation, psychiatric disorders
- Directly impact transcriptional programs, DNA repair & metabolism
- Intense area of research for which there is a receptive community to test chemical probes and protein capture reagents

Epigenetic targets appear to be Druggable

- SAHA (HDAC inhibitor) approved for cutaneous T-cell lymphoma
- Inhibitors of DNA MTases shown to reactivate silenced genes
- nM inhibitors of Bromo domains have been developed and can affect transcriptional programs.

Opportunity for discovery of new biology and new drug targets using chemical biology approaches

Three basic mechanisms of epigenetic regulation

Gene expression is regulated by chromatin structure and its covalent modifications

Acetyl- and methyl- lysines are an important component of the histone code

Readers, Writers and Erasers of Histone Marks: Key Focus of SGC Structural Effort

Can we exploit the variability in Lysine binding sites?

MBT Domain (mono & di-methyl)

Bromo Domain (acetyl)

Tudor Domain (di- & tri-methyl)

Chromo Domain (tri-methyl)

Histone Methyltransferase Family Approach: Opportunities for selectivity

Case Study: G9a methyltransferase

Molecular Cell

Technique

Reversal of H3K9me2 by a Small-Molecule Inhibitor for the G9a Histone Methyltransferase

Stefan Kubicek,¹ Roderick J. O'Sullivan,¹ E. Michael August,² Eugene R. Hickey,² Qiang Zhang,² Miguel L. Teodoro,² Stephen Rea,^{1,3} Karl Mechtler,¹ Jennifer A. Kowalski,² Carol Ann Homon,² Terence A. Kelly,² and Thomas Jenuwein^{1,*}

BIX-01294

Cell Stem Cell

Correspondence

A Combined Chemical and Genetic Approach for the Generation of Induced Pluripotent Stem Cells

Yan Shi, 1 Jeong Tae Do, 2 Caroline Desponts, 1 Heung Sik Hahm, 1 Hans R. Schöler, 2 and Sheng Ding 1, 7

But, also implicated in Addiction, Cognition/Behavior, Viral Response and Cancer

SCIENCE VOL 327 8 JANUARY 2010

Essential Role of the Histone Methyltransferase G9a in Cocaine-Induced Plasticity

Ian Maze, ¹ Herbert E. Covington III, ¹ David M. Dietz, ¹ Quincey LaPlant, ^{1,2} William Renthal, ² Scott J. Russo, ¹ Max Mechanic, ² Ezekiell Mouzon, ¹ Rachael L. Neve, ³ Stephen J. Haggarty, ^{4,5} Yanhua Ren, ¹ Srihari C. Sampath, ⁶ Yasmin L. Hurd, ¹ Paul Greengard, ⁷ Alexander Tarakhovsky, ⁶ Anne Schaefer, ⁷ Eric J. Nestler ¹*

678 Neuron 64, 678-691, December 10, 2009

Control of Cognition and Adaptive Behavior by the GLP/G9a Epigenetic Suppressor Complex

Anne Schaefer, 1.4 Srihari C. Sampath, 2.4.6 Adam Intrator, 1 Alice Min, 1 Tracy S. Gertler, 3 D. James Summeier, 3 Alexander Tarakhovsky, 2.5.* and Paul Greengard 1.5.*

J Biol Chem. 2010 Mar 24.

Involvement of histone H3 Lysine 9 (H3K9) methyl transferase G9a in the maintenance of HIV-1 latency and its reactivation by BIX01294. Imai K, Togami H, Okamoto T.

G9a and Glp Methylate Lysine 373 in the Tumor Suppressor p53*5

Received for publication, September 8, 2009, and in revised form, January 5, 2010 Published, JBC Papers in Press, January 29, 2010, DOI 10.1074/jl Jing Huang^{‡§1}, Jean Dorsey[§], Sergei Chuikov[¶], Xinyue Zhang[‡], Thomas Jenuwein^{||}**, Danny Reinbe and Shelley L. Berger^{§ §§}

Mol Cancer Res 2009;7(6). June 2009

Distinct Roles for Histone Methyltransferases G9a and GLP in Cancer Germ-Line Antigen Gene Regulation in Human Cancer Cells and Murine Embryonic Stem Cells

Petra A. Link, ¹ Omkaram Gangisetty, ¹ Smitha R. James, ¹ Anna Woloszynska-Read, ¹ Makoto Tachibana, ² Yoichi Shinkai, ² and Adam R. Karpf ¹

Leukemia (2010) 24, 81-88

EVI-1 interacts with histone methyltransferases SUV39H1 and G9a for transcriptional repression and bone marrow immortalization

S Goyama^{1,2}, E Nitta¹, T Yoshino¹, S Kako¹, N Watanabe-Okochi¹, M Shimabe¹, Y Imai¹, K Takahashi² and M Kurokawa¹

Chemical biology for target discovery/validation

Goal: Develop well characterized small molecules to be used to link pharmacological inhibition of an individual target (or small group of targets) with cellular biology/pathways/phenotype

- Potent: IC50 < 100 nM in vitro</p>
- Selective: 30x over related proteins
- Cell permeable: IC50 < 1 uM in cell
- Low/No cellular toxicity

Make available to research community

Unique Consortium: Epigenetics PPP

Objective: identify 40 probes and make compounds & data publicly available (no restriction on use) over 4 years

Participants: Funder

- •SGC Toronto (HMTs, Royal Family, HATs) Ontario \$4.6M
- •SGC Oxford (KDMs, Bromo domains) Wellcome Trust \$8M
- •SGC Stockholm (PARPs) Swedish Sci. F. \$ 3M
- •GSK, Pfizer, Novartis Chemistry (8 med chemist FTEs each)
 - commit to release "public probe" other compounds not disclosed
- •NIH Chemical Genomics Center (20 HTS slots data public)
- Ontario Inst. Cancer Research (2 FTE med chemists)
- •Frye Lab, University N. Carolina (4 FTE med chem/assay dev)

Structure based design of potent and selective G9a antagonist

 UNC0638 occupies histone binding groove and does not interact with SAM binding pocket. Same binding mode as BIX01294 & UNC0224

Associated Data Published on SGC Website

etting Started 🔊 Latest Headlines

Probes for G9a/G... 🔯 🔣 Structural Genomics Consortium Datab... 🔯 👍

www.TheSGC.org/chemical_probes/UNC0638

UNC0638: Selective chemical probe for G9a/GLP methyltransferases

UNC0638 Data Sheet 🃆

How to obtain this probe

UNC0638 released on June 1, 2010

Biology of the G9a/GLP methyltransferases

G9a (EHMT2) and GLP (EHMT1) catalyze the mono and dimethylation of lysine 9 of histone 3 (H3K9) and other non-histone substrates such as p53 and WIZ.

Selectivity Within Target Family

Protein	IC ₅₀ /nM (Activity)	Tm shift °C ¹
G9a (EHMT2)	<15	4
GLP (EHMT1)	19 ± 1	8
SETD7	>10,000	nt
SETD8	>10,000	nd
PRMT3	>10,000	nd
SUV39H2	>10,000	nt
DOT1L	nt	nd
PRDM1	nt	nd
PRDM10	nt	nd
PRDM12	nt	nd
SMYD3	nt	nd
JMJD2E	4660 (AlphaScreen)	nt
HTATIP	nt	nd

(nt=not tested, nd=not detected, 1 singlicate determination @ 100 µM)

Selectivity Beyond Target Family >30% Inhib @ 1 µM

Functional consequences of G9a/GLP inhibition?

Well tolerated in variety of cancer cell lines

Cell Lines		IC ₅₀ (nM)	
		H3K9me2	МТТ
Breast carcinoma	MDA231	81 ± 9	11,000 ± 710
	MCF7	70 ± 12	7,600
Prostate carcinoma	PC3	59	14,000
	22RV1	48	4,500
Colon carcinoma	HCT116 wt	210	11,000
	HCT116 p53-/-	240	11,000
Human fibroblast	IMR90	120	2,300

Re-activates expression of retroviral GFP reporter protein

James Ellis, HSC

JQ1S

betsoff1

log[conc.(µM)]

ARTICLE

Selective inhibition of BET bromodomains

Panagis Filippakopoulos¹*, Jun Qi²*, Sarah Picaud¹*, Yao Shen³, William B. Smith², Oleg Fedorov¹, Elizabeth M. Morse², Tracey Keates¹, Tyler T. Hickman⁴, Ildiko Felletar¹, Martin Philpott¹, Shonagh Munro⁵, Michael R. McKeown^{2,6}, Yuchuan Wang⁷, Amanda L. Christie⁸, Nathan West², Michael J. Cameron⁴, Brian Schwartz⁴, Tom D. Heightman¹, Nicholas La Thangue⁵, Christopher A. French⁴, Olaf Wiest³, Andrew L. Kung^{8,9}, Stefan Knapp^{1,5} & James E. Bradner^{2,6}

BET family of BRD proteins

Regulation of P-Tefb(cdk9) mediated transcription

- KO of BRD4/2 results in G1 arrest and apoptosis and suppresses many genes required for growth
- P-TEFb and BRD functions with the oncogene c-Myc
- c-Myc interacts with the H3Kme3 specific demethylase JARID1A

BET in Disease: NMC

- *NUT midline carcinoma (NMC)* is a rare, highly lethal cancer that occurs in children and adults.
- NMCs uniformly present in the midline, most commonly in the head, neck, or mediastinum, as poorly differentiated carcinomas
- Rearrangement of the Nuclear protein in testis (NUT) that creates a BRD4-NUT fusion gene
- Variant rearrangements, some involving the BRD3 gene
- NMC is diagnosed by fluorescence in situ hybridization.
 However, most cases of NMC currently go unrecognized.

BET Probe: effective against NMC xenograft

Jay Bradner, Dana Farber

Cellular and in vivo studies

- ➤ Induces terminal differentiation of BRD4-NUT cell lines derived from MLC patients
- Anti-proliferative effects on cell lines that carry BRD-NUT fusion at 100nM
- Induces apoptosis in BRD-NUT cell lines
- Dissolves nuclear foci typically observed in BRD-NUT cell lines and biopsies
- Reduces tumour growth in xenograft models (50mg/kg IP, enantiomer)
- \blacktriangleright Displaces BRD4 from E-selectin and TNFlpha promoter in ChIP assays

Summary

- Open access research tools
 - Proteins, structural info, production protocols
 - Chemical Probes
 - Protein capture reagents
- Proactive engagement of community for
 - biological discovery
 - target validation
 - ultimately new therapeutics

ACKNOWLEDGEMENTS

www.TheSGC.org

Aled Edwards – Director SGC

Cheryl Arrowsmith - CS SGC-Toronto, Leader Chemical Probes Project

Johan Weigelt - Assoc. Dir, CS SGC-Stockholm, leader BioProbes Project

Chas Bountra - CS SGC-Oxford, leader Disease Association Project

Stefan Knapp - Pl Kinome & Bromo Domains

Udo Opperman - Pl Histone Lysine demethylases

Tom Heightman - PI Chemical Biology & Project Manager-Chem Probes

Peter Brown - Project Manager-Chemical Probes

Masoud Vedadi – Pl Molecular Biophysics

Matthieu Schapira - Pl Research Informatics/Comp Chem

Jinrong Min -PI Structural Chromatin Biology

FUNDING PARTNERS

Canadian Institutes for Health Research, Canadian Foundation for Innovation, Genome Canada through the Ontario Genomics Institute, GlaxoSmithKline, Knut and Alice Wallenberg Foundation, Merck & Co., Inc., Novartis Research Foundation, Ontario Innovation Trust, Ontario Ministry for Research and Innovation, Swedish Agency for Innovation Systems, Swedish Foundation for Strategic Research, and Wellcome Trust.